Mounting Instruction for DP3 Power Module
AN6046
Εισαγωγή
This application note describes general concepts, guidelines, and recommendations for the procedures and specifications related to heatsink installation, Printed Circuit Board (PCB) mounting, and unmounting for the Microchip Dual Pack 3 (DP3) power module. This document does not address all possible applications or conditions that may be encountered by end users.
This document is not part of any warranty agreement from the supplier. We strongly recommends that users perform comprehensive electromechanical evaluations to ensure suitability for their specific application.
DP3 Power Module Overview
The DP3 power module features press-fit pin technology, enabling solderless PCB mounting via a press-fit insertion process. This ensures low-resistance, stable electrical contact. The press-fit pins are tin-electroplated T2 copper with a nominal width of 1.2 mm.
Note: During installation, the press-fit pin is forcibly inserted into the PCB hole. This action deforms the pin, resulting in a tight interference fit and reliable electrical contact between the interfaces.
The following figures show the press-fit pin description and insertion.
Figure 1. Press-fit Pin Description
Figure 2. Press-fit Pin Insertion
Χειρισμός ηλεκτροστατικής εκκένωσης (ESD).
Always observe Electrostatic Discharge (ESD) safety precautions when handling ESD-sensitive components, such as IGBT modules. Ensure proper installation and maintain workplace ESD safety compliance to prevent latent or severe damage that may result from excessive static electricity discharge during handling.
The following figure shows the ESD caution symbol.
Figure 3. ESD Caution Symbol

PCB Mounting and Dismounting Instructions
This section describes the detailed information on PCB requirements, as well as instructions for mounting and dismounting the PCB.
1.1. PCB Requirements
The recommended PCB specifications for the DP3 power module with press-fit pins, as provided in this section, are based on experimental validation using standard FR4 material with copper base metallization and tin-plated holes, in accordance with IEC 60352-5. If alternative technologies, design parameters, materials, or metallization thicknesses are considered, end users are advised to perform appropriate qualification and evaluation to ensure compatibility For optimal electrical contact between the press-fit pins and PCB holes, the PCB should be designed according to the specifications as given in the below figure and table. Deviation from these recommendations may result in reduced contact reliability or mechanical issues during PCB mounting.
Figure 1-1. Recommended PCB Design Structure
Πίνακας 1-1. Recommended PCB Design Specifications
| PCB Feature | Ελάχ. | Τυπ. | Μέγ. | Μονάδα |
| Διάμετρος οπής διάτρησης | 1.12 | 1.15 | — | mm |
| Πάχος χαλκού στην τρύπα | 25 | — | 50 | μm |
| Hole tin metalization | 4 | — | 15 | μm |
| Τελική διάμετρος οπής | 0.94 | — | 1.09 | mm |
| Χάλκινο πάχος αγωγών | 35 | 70–105 | 400 | μm |
1.2. PCB Mounting Process
The DP3 power module is mounted onto the PCB by inserting the module’s press-fit pins into the designated PCB holes. This connection is established through a press-fit process, which can be performed using either a manual lever press or an automated press machine. Automated presses should provide adjustable speed, displacement, and force control to ensure consistent contact quality and repeatability.
The following figure shows the recommended stacking arrangement, including a sample work holder and press plate tool, for the PCB press-fit pin insertion process. Ensure that all interfaces are vertically aligned and parallel to prevent damage or issues such as bent pins, tilted PCBs, or loose connections during mounting.
Εικόνα 1-2. Recommended Stacking Arrangement
Maintain a minimum clearance of 5 mm from the center of each press-fit pin to adjacent components on the PCB. This spacing must also be considered when designing user-developed press tools and when positioning components on the PCB.
After aligning the PCB and module in the work holder, apply a constant force and speed to insert the pins into the PCB holes. Continue pressing until the PCB contacts the mounting guide or footing on the module. Always verify the planarity between the PCB and the module.
Το παρακάτω σχήμα δείχνει το πample of press-fit insertion process.
Εικόνα 1-3. Example of Press-fit Insertion Process

The following table lists the recommended press-fit pin insertion parameters. These parameters ensure sufficient force and displacement speed to establish reliable contact between interfaces, based on the specified materials and structure, without damaging the PCB. If alternative parameters, materials, or structures are used, end users should perform their own evaluations.
Πίνακας 1-2. Recommended Press-fit Pin Insertion Parameters
| Παράμετρος | Ελάχ. | Τυπ. | Μέγ. | Μονάδα |
| Διάμετρος οπής διάτρησης | 1.15 | mm | ||
| Press-fit pin insertion speed | 25 | mm/min | ||
| Copper thicknesss in hole | 25 | — | 50 | μm |
| Press-fit pin insertion force per pin | — | 110 | — | N |
1.3. PCB Dismounting Process
If the PCB needs to be replaced, dismounting can be performed on processed units. A dismounted PCB can be reused and remounted onto the module up to three times. However, a module that has been dismounted should not be reused with the press-fit method, as the pins may be deformed after the initial mounting. If remounting the PCB onto the module is required, soldering the pins to the new board is necessary to ensure a reliable and stable connection.
The dismounting process can be performed using a manual lever press or a mechanized press machine. The upper press-out tool, developed by the end user, must be designed according to the PCB layout to apply pressure only to the press-fit pins and avoid damaging other components.
To dismount, place the module with the mounted PCB onto the work holder, ensuring the board is fully supported by the tooling ledge. Apply force to the pins to release the contact between interfaces and separate the module from the PCB. The module will descend into the work holder, and the PCB will be completely detached.
The following figure shows the dismounting process using a sample work holder and press plate tooling.
Εικόνα 1-4. Example of Press-fit Extraction Process
The following table lists the recommended press-fit pin extraction parameters.
Πίνακας 1-3. Recommended Press-fit Pin Extraction Parameters
| Παράμετρος | Ελάχ. | Τυπ. | Μέγ. | Μονάδα |
| Extraction speed | 12 | mm/min | ||
| Press-fit pin extraction force per pin | 40 | — | — | N |
Fastening the PCB to the Module
Additional fasteners are used to secure the PCB to the module. These fasteners help maintain connection integrity by minimizing tension between the PCB and the press-fit pins. Using additional fasteners also reduces the risk of external strain affecting the pins during subsequent processes.
2.1. Fastener Recommendations
The DP3 power module includes a PCB footing and screw guide structure with an internal hole diameter of 2.1 ± 0.1 mm. This design supports the use of self-tapping screws with a recommended diameter of 2.25 mm to 2.45 mm. Select a screw length between 4 mm and 10 mm, based on the thickness of the PCB and the weight of the mounted assembly.
The following figures shows the mounting hole dimension, recommended screw dimension, and the PCB footing structure respectively.
Εικόνα 2-1. Mounting Hole Dimension
Εικόνα 2-2. Συνιστώμενη διάσταση βίδας
Εικόνα 2-3. PCB Footing/Screw Guide Location
2.2. Fastening Screw Insertion
The upper part of the screw holes is designed to guide and support the PCB during mounting. This area cannot withstand excessive forces during self-tapping screw insertion. Always ensure vertical alignment of the screw to the hole and use the correct screw diameter. Misalignment or incorrect screw size can cause damage to the module and negatively impact the quality of the press-fit pin and PCB contact.
The recommended mounting torque is approximately 0.4–0.5 Nm. Manual screw tightening is preferred to minimize the risk of damage. If automated tools are used, select electronically controlled drivers with slow rotation speed. End users should assess and validate the chosen method to ensure safe and reliable installation.
The following figures show the properly aligned mounting screw, misaligned mounting screw, and possible mechanical damage due to misaligned screw or incorrect screw diameter.
Εικόνα 2-4. Properly Aligned Mounting Screw
Εικόνα 2-5. Misaligned Mounting Screw
Εικόνα 2-6. Possible Mechanical Damage

Heatsink Mounting Assembly
Temperature regulation is essential to ensure optimal functionality of power modules, particularly during high-power switching operations, which can generate significant heat due to power loss. To maintain the module within its allowable operating temperature range, use a heatsink to dissipate excess heat.
3.1. Heatsink Requirements
The condition of the materials at the heatsink-to-baseplate interface is critical during mounting, as it directly affects heat dissipation. Ensure that all contact surfaces are free from contamination, foreign materials, and corrosion. The mounting surface of the heatsink should have a surface roughness of less than 10 μm and a flatness of less than 30 μm.
Verify that the heatsink is rigid and can withstand subsequent processes without twisting or distortion. Defects in the heatsink can increase contact thermal resistance and introduce additional stress to the module, potentially leading to thermal or electrical failure.
3.2. Thermal Conductive Paste (TCP) Application
Applying TCP during mounting fills gaps between the baseplate and the heatsink, which are caused by surface irregularities. Proper application of TCP significantly improves heat dissipation efficiency and reduces the thermal resistance of the module during operation.
To achieve optimal thermal dissipation and ensure uniform and reproducible thermal layers, apply TCP using a stencil screen printing process. This method allows for precise control and adjustment of TCP distribution for each module. The recommended thermal paste thickness is typically between 50 μm and 100 μm.
The following figure shows the stencil screen printing process. In this process, the unit is placed on a work holder, the stencil screen is positioned on top of the module, and TCP is applied using a manual metal squeegee.
Εικόνα 3-1. Stencil Screen Printing Process

3.3. Mounting Screw and Tightening Requirement
The DP3 power module requires four DIN M5 screws for heatsink mounting. When selecting screws and washers, ensure that the resulting clearance and creepage distances between the power terminals and the nearest screw head or washer comply with applicable standards. Evaluate these distances during the development phase.
Follow the below steps for heatsink mounting procedure and bolt tightening sequence:
- Position the Module
a. Place the power module, with thermal conductive paste applied, onto the heatsink. - Initial Screw Placement
a. Insert all four M5 screws.
b. Tighten each screw to 0.5 Nm in the following diagonal sequence: 1 – 2 – 3 – 4, see Figure 3-2. - Intermediate Tightening
a. Tighten each screw to 2 Nm, following the same sequence: 1 – 2 – 3 – 4. - Τελική Σύσφιξη
a. Tighten each screw to the specified final torque, again in the sequence: 1 – 2 – 3 – 4.
b. See the product datasheet for the maximum allowable torque. - Torque Verification (Recommended)
a. Use a torque-controlled screwdriver for all tightening steps.
b. If possible, re-tighten all screws to the final torque in the same sequence (1 – 2 – 3 – 4) after three hours.
The following figure shows the tightening sequence to mount the module to the heatsink.
Εικόνα 3-2. Tightening Sequence to Mount the Module to the Heatsink

Connection Pull and Push Forces for DP3 Module
The DP3 power module must be mounted to ensure that pull forces applied to the power terminals are minimized. Excessive pull or push forces can damage the terminals or compromise the reliability of the electrical connection.
The following figure shows the maximum allowable pull and push forces at the power terminals during the screw-in operation.
Εικόνα 4-1. Maximum Pull and Push Forces for DP3 Module

Assembling Busbars to Power Terminals
Mount the busbars onto the power module and secure them to the power terminals using M6 screws with M6 flat washers. Select the screw length based on the combined thickness of the busbar and washers. Ensure that the effective thread engagement does not exceed a maximum depth of 10 mm in the module. See product datasheet for the maximum allowable torque.
To minimize switching over voltages, place decoupling capacitors as close as possible to the VBUS and 0/VBUS power terminals.
When installing isolated spacers, set their height (X) to be approximately 0.5 mm lower than the height (Y) of the power terminals. This pre-tensions the power terminals and prevents permanent force in the Fz+ direction (see Figure 4-1 and Figure 5-1). Ensure that the busbars are at the same height as the power connectors. See the following figure and the product datasheet for an exampη σωστή συναρμολόγηση.
For heavy components such as electrolytic or polypropylene capacitors located near the power module, use isolated spacers to support their weight. The weight of these components should be borne by the spacers, not by the power module. Add additional isolated spacers as needed to prevent issues caused by vibration and shock.
Εικόνα 5-1. Example of DP3 Assembly

Σύναψη
This application note provides key recommendations for mounting the DP3 power module.
Following these guidelines will help minimize mechanical stress on the busbar, PCB, and power module, supporting long-term system operation. Adhering to the specified heatsink mounting instructions is also critical to achieving the lowest possible thermal resistance from the power chips to the cooler. Implementing these procedures is essential to ensure optimal system reliability.
Ιστορικό αναθεώρησης
Το ιστορικό αναθεωρήσεων περιγράφει τις αλλαγές που εφαρμόστηκαν στο έγγραφο. Οι αλλαγές παρατίθενται με αναθεώρηση, ξεκινώντας από την πιο πρόσφατη δημοσίευση.
| Αναθεώρηση | Ημερομηνία | Περιγραφή |
| A | 07/2025 | Αρχική αναθεώρηση |
Πληροφορίες μικροτσίπ
Εμπορικά σήματα
Το όνομα και το λογότυπο "Microchip", το λογότυπο "M" και άλλα ονόματα, λογότυπα και εμπορικά σήματα είναι σήματα κατατεθέντα και μη καταχωρημένα εμπορικά σήματα της Microchip Technology Incorporated ή των θυγατρικών ή/και θυγατρικών της στις Ηνωμένες Πολιτείες και/ή σε άλλες χώρες ("Microchip Εμπορικά σήματα»). Πληροφορίες σχετικά με τα εμπορικά σήματα Microchip μπορείτε να βρείτε στη διεύθυνση https://www.microchip.com/en-us/about/legalinformation/microchip-trademarks.
ISBN: 979-8-3371-1627-3
Νομική ειδοποίηση
Αυτή η δημοσίευση και οι πληροφορίες στο παρόν μπορούν να χρησιμοποιηθούν μόνο με προϊόντα Microchip, συμπεριλαμβανομένου του σχεδιασμού, της δοκιμής και της ενσωμάτωσης προϊόντων Microchip στην εφαρμογή σας. Η χρήση αυτών των πληροφοριών με οποιονδήποτε άλλο τρόπο παραβιάζει αυτούς τους όρους. Οι πληροφορίες σχετικά με τις εφαρμογές συσκευών παρέχονται μόνο για τη δική σας διευκόλυνση και ενδέχεται να αντικατασταθούν από ενημερώσεις. Είναι δική σας ευθύνη να διασφαλίσετε ότι η αίτησή σας πληροί τις προδιαγραφές σας. Επικοινωνήστε με το τοπικό γραφείο πωλήσεων Microchip για πρόσθετη υποστήριξη ή λάβετε πρόσθετη υποστήριξη στο www.microchip.com/en-us/support/design-help/client-support-services.
ΑΥΤΕΣ ΟΙ ΠΛΗΡΟΦΟΡΙΕΣ ΠΑΡΕΧΟΝΤΑΙ ΑΠΟ ΤΟ MICROCHIP «AS IS». Η MICROCHIP ΔΕΝ ΠΑΡΕΧΕΙ ΚΑΜΙΑ ΔΗΛΩΣΗ Ή ΕΓΓΥΗΣΗ ΟΠΟΙΟΥΔΗΠΟΤΕ ΕΙΔΟΥΣ ΡΗΤΗ Ή ΣΙΩΠΗΡΗ, ΓΡΑΠΤΗ Ή ΠΡΟΦΟΡΙΚΗ, ΝΟΜΙΚΕΣ Ή ΑΛΛΙΩΣ, ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΠΛΗΡΟΦΟΡΙΕΣ ΠΟΥ ΣΥΜΠΕΡΙΛΑΜΒΑΝΟΝΤΑΙ ΑΛΛΑ ΟΥΤΕ ΠΕΡΙΟΡΙΣΜΕΝΗ, ΕΝΤΑΞΙΑ, SE, Ή ΕΓΓΥΗΣΕΙΣ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΚΑΤΑΣΤΑΣΗ, ΤΗΝ ΠΟΙΟΤΗΤΑ Ή ΤΗΝ ΑΠΟΔΟΣΗ ΤΟΥ. ΣΕ ΚΑΜΙΑ ΠΕΡΙΠΤΩΣΗ ΔΕΝ ΘΑ ΕΙΝΑΙ ΥΠΕΥΘΥΝΗ Η ΜΙΚΡΟΤΣΙΠ ΓΙΑ ΟΠΟΙΑΔΗΠΟΤΕ ΕΜΜΕΣΗ, ΕΙΔΙΚΗ, ΤΙΜΩΡΙΚΗ, ΣΥΜΠΤΩΜΑΤΙΚΗ Ή ΣΥΝΕΠΕΙΡΗ ΑΠΩΛΕΙΑ, ΖΗΜΙΑ, ΚΟΣΤΟΣ Ή ΔΑΠΑΝΗ ΟΠΟΙΟΥΔΗΠΟΤΕ ΕΙΔΟΥΣ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΙΘΑΝΟΤΗΤΑ Ή ΟΙ ΖΗΜΙΕΣ ΕΙΝΑΙ ΠΡΟΒΛΕΨΙΜΕΣ. ΣΤΟΝ ΠΛΗΡΩΣ ΒΑΘΜΟ ΠΟΥ ΕΠΙΤΡΕΠΕΤΑΙ ΑΠΟ ΤΟ ΝΟΜΟ, Η ΣΥΝΟΛΙΚΗ ΕΥΘΥΝΗ ΤΗΣ ΜΙΚΡΟΤΣΙΠ ΓΙΑ ΟΛΕΣ ΤΙΣ ΑΞΙΩΣΕΙΣ ΜΕ ΟΠΟΙΟΝΔΗΠΟΤΕ ΤΡΟΠΟ ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΠΛΗΡΟΦΟΡΙΕΣ Ή ΤΗ ΧΡΗΣΗ ΤΟΥ ΔΕΝ ΘΑ ΥΠΕΡΒΑΙΝΕΙ ΤΟ ΠΟΣΟ ΤΩΝ ΤΕΛΩΝ, ΕΑΝ ΥΠΑΡΧΕΙ ΑΥΤΟ ΠΛΗΡΟΦΟΡΙΕΣ.
Η χρήση των συσκευών Microchip σε εφαρμογές υποστήριξης ζωής ή/και ασφάλειας είναι εξ ολοκλήρου με κίνδυνο του αγοραστή και ο αγοραστής συμφωνεί να υπερασπιστεί, να αποζημιώσει και να διατηρήσει το αβλαβές Microchip από οποιαδήποτε ζημιά, αξιώσεις, κοστούμια ή έξοδα που προκύπτουν από αυτή τη χρήση. Καμία άδεια δεν μεταβιβάζεται, σιωπηρά ή με άλλο τρόπο, βάσει οποιωνδήποτε δικαιωμάτων πνευματικής ιδιοκτησίας Microchip, εκτός εάν αναφέρεται διαφορετικά.
Δυνατότητα προστασίας κωδικών συσκευών μικροτσίπ
Σημειώστε τις ακόλουθες λεπτομέρειες της δυνατότητας προστασίας κωδικών σε προϊόντα Microchip:
- Τα προϊόντα μικροτσίπ πληρούν τις προδιαγραφές που περιέχονται στο συγκεκριμένο φύλλο δεδομένων μικροτσίπ τους.
- Η Microchip πιστεύει ότι η οικογένεια προϊόντων της είναι ασφαλής όταν χρησιμοποιείται με τον προβλεπόμενο τρόπο, εντός των προδιαγραφών λειτουργίας και υπό κανονικές συνθήκες.
- Το Microchip εκτιμά και προστατεύει επιθετικά τα δικαιώματα πνευματικής ιδιοκτησίας του. Οι προσπάθειες παραβίασης των χαρακτηριστικών προστασίας κωδικών των προϊόντων Microchip απαγορεύονται αυστηρά και ενδέχεται να παραβιάζουν τον Νόμο για τα δικαιώματα πνευματικής ιδιοκτησίας στην ψηφιακή εποχή.
- Ούτε το Microchip ούτε οποιοσδήποτε άλλος κατασκευαστής ημιαγωγών μπορεί να εγγυηθεί την ασφάλεια του κώδικά του. Η προστασία κωδικού δεν σημαίνει ότι εγγυόμαστε ότι το προϊόν είναι «άθραυστο». Η προστασία κωδικών εξελίσσεται συνεχώς. Η Microchip δεσμεύεται να βελτιώνει συνεχώς τα χαρακτηριστικά προστασίας κωδικών των προϊόντων μας.

Σημείωση Αίτησης
© 2025 Microchip Technology Inc. και οι θυγατρικές της
DS00006046A – 16
Έγγραφα / Πόροι
![]() |
MICROCHIP AN6046 DP3 Power Module [pdf] Εγχειρίδιο οδηγιών AN6046 DP3 Power Module, AN6046, DP3 Power Module, Power Module, Module |
